3.154 \(\int \tan ^{\frac {3}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)} (A+B \tan (c+d x)) \, dx\)

Optimal. Leaf size=200 \[ \frac {(-1)^{3/4} \sqrt {a} (7 B+4 i A) \tan ^{-1}\left (\frac {(-1)^{3/4} \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{4 d}+\frac {(4 A-i B) \sqrt {\tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}{4 d}+\frac {(1+i) \sqrt {a} (B+i A) \tanh ^{-1}\left (\frac {(1+i) \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{d}+\frac {B \tan ^{\frac {3}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)}}{2 d} \]

[Out]

1/4*(-1)^(3/4)*(4*I*A+7*B)*arctan((-1)^(3/4)*a^(1/2)*tan(d*x+c)^(1/2)/(a+I*a*tan(d*x+c))^(1/2))*a^(1/2)/d+(1+I
)*(I*A+B)*arctanh((1+I)*a^(1/2)*tan(d*x+c)^(1/2)/(a+I*a*tan(d*x+c))^(1/2))*a^(1/2)/d+1/4*(4*A-I*B)*tan(d*x+c)^
(1/2)*(a+I*a*tan(d*x+c))^(1/2)/d+1/2*B*(a+I*a*tan(d*x+c))^(1/2)*tan(d*x+c)^(3/2)/d

________________________________________________________________________________________

Rubi [A]  time = 0.68, antiderivative size = 200, normalized size of antiderivative = 1.00, number of steps used = 9, number of rules used = 8, integrand size = 38, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.210, Rules used = {3597, 3601, 3544, 205, 3599, 63, 217, 203} \[ \frac {(-1)^{3/4} \sqrt {a} (7 B+4 i A) \tan ^{-1}\left (\frac {(-1)^{3/4} \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{4 d}+\frac {(4 A-i B) \sqrt {\tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}{4 d}+\frac {(1+i) \sqrt {a} (B+i A) \tanh ^{-1}\left (\frac {(1+i) \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{d}+\frac {B \tan ^{\frac {3}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)}}{2 d} \]

Antiderivative was successfully verified.

[In]

Int[Tan[c + d*x]^(3/2)*Sqrt[a + I*a*Tan[c + d*x]]*(A + B*Tan[c + d*x]),x]

[Out]

((-1)^(3/4)*Sqrt[a]*((4*I)*A + 7*B)*ArcTan[((-1)^(3/4)*Sqrt[a]*Sqrt[Tan[c + d*x]])/Sqrt[a + I*a*Tan[c + d*x]]]
)/(4*d) + ((1 + I)*Sqrt[a]*(I*A + B)*ArcTanh[((1 + I)*Sqrt[a]*Sqrt[Tan[c + d*x]])/Sqrt[a + I*a*Tan[c + d*x]]])
/d + ((4*A - I*B)*Sqrt[Tan[c + d*x]]*Sqrt[a + I*a*Tan[c + d*x]])/(4*d) + (B*Tan[c + d*x]^(3/2)*Sqrt[a + I*a*Ta
n[c + d*x]])/(2*d)

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 203

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTan[(Rt[b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[b, 2]), x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rule 205

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]*ArcTan[x/Rt[a/b, 2]])/a, x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rule 217

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Subst[Int[1/(1 - b*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a,
b}, x] &&  !GtQ[a, 0]

Rule 3544

Int[Sqrt[(a_) + (b_.)*tan[(e_.) + (f_.)*(x_)]]/Sqrt[(c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)]], x_Symbol] :> Dist[
(-2*a*b)/f, Subst[Int[1/(a*c - b*d - 2*a^2*x^2), x], x, Sqrt[c + d*Tan[e + f*x]]/Sqrt[a + b*Tan[e + f*x]]], x]
 /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0]

Rule 3597

Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*tan[(e_
.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(B*(a + b*Tan[e + f*x])^m*(c + d*Tan[e + f*x])^n)/(f*(m + n)), x] +
Dist[1/(a*(m + n)), Int[(a + b*Tan[e + f*x])^m*(c + d*Tan[e + f*x])^(n - 1)*Simp[a*A*c*(m + n) - B*(b*c*m + a*
d*n) + (a*A*d*(m + n) - B*(b*d*m - a*c*n))*Tan[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, m}, x] &
& NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && GtQ[n, 0]

Rule 3599

Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*tan[(e_
.) + (f_.)*(x_)])^(n_), x_Symbol] :> Dist[(b*B)/f, Subst[Int[(a + b*x)^(m - 1)*(c + d*x)^n, x], x, Tan[e + f*x
]], x] /; FreeQ[{a, b, c, d, e, f, A, B, m, n}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && EqQ[A*b + a*B,
 0]

Rule 3601

Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*tan[(e_
.) + (f_.)*(x_)])^(n_), x_Symbol] :> Dist[(A*b + a*B)/b, Int[(a + b*Tan[e + f*x])^m*(c + d*Tan[e + f*x])^n, x]
, x] - Dist[B/b, Int[(a + b*Tan[e + f*x])^m*(c + d*Tan[e + f*x])^n*(a - b*Tan[e + f*x]), x], x] /; FreeQ[{a, b
, c, d, e, f, A, B, m, n}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && NeQ[A*b + a*B, 0]

Rubi steps

\begin {align*} \int \tan ^{\frac {3}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)} (A+B \tan (c+d x)) \, dx &=\frac {B \tan ^{\frac {3}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)}}{2 d}+\frac {\int \sqrt {\tan (c+d x)} \sqrt {a+i a \tan (c+d x)} \left (-\frac {3 a B}{2}+\frac {1}{2} a (4 A-i B) \tan (c+d x)\right ) \, dx}{2 a}\\ &=\frac {(4 A-i B) \sqrt {\tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}{4 d}+\frac {B \tan ^{\frac {3}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)}}{2 d}+\frac {\int \frac {\sqrt {a+i a \tan (c+d x)} \left (-\frac {1}{4} a^2 (4 A-i B)-\frac {1}{4} a^2 (4 i A+7 B) \tan (c+d x)\right )}{\sqrt {\tan (c+d x)}} \, dx}{2 a^2}\\ &=\frac {(4 A-i B) \sqrt {\tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}{4 d}+\frac {B \tan ^{\frac {3}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)}}{2 d}+(-A+i B) \int \frac {\sqrt {a+i a \tan (c+d x)}}{\sqrt {\tan (c+d x)}} \, dx+\frac {(4 A-7 i B) \int \frac {(a-i a \tan (c+d x)) \sqrt {a+i a \tan (c+d x)}}{\sqrt {\tan (c+d x)}} \, dx}{8 a}\\ &=\frac {(4 A-i B) \sqrt {\tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}{4 d}+\frac {B \tan ^{\frac {3}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)}}{2 d}+\frac {(a (4 A-7 i B)) \operatorname {Subst}\left (\int \frac {1}{\sqrt {x} \sqrt {a+i a x}} \, dx,x,\tan (c+d x)\right )}{8 d}+\frac {\left (2 a^2 (i A+B)\right ) \operatorname {Subst}\left (\int \frac {1}{-i a-2 a^2 x^2} \, dx,x,\frac {\sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{d}\\ &=\frac {(1+i) \sqrt {a} (i A+B) \tanh ^{-1}\left (\frac {(1+i) \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{d}+\frac {(4 A-i B) \sqrt {\tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}{4 d}+\frac {B \tan ^{\frac {3}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)}}{2 d}+\frac {(a (4 A-7 i B)) \operatorname {Subst}\left (\int \frac {1}{\sqrt {a+i a x^2}} \, dx,x,\sqrt {\tan (c+d x)}\right )}{4 d}\\ &=\frac {(1+i) \sqrt {a} (i A+B) \tanh ^{-1}\left (\frac {(1+i) \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{d}+\frac {(4 A-i B) \sqrt {\tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}{4 d}+\frac {B \tan ^{\frac {3}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)}}{2 d}+\frac {(a (4 A-7 i B)) \operatorname {Subst}\left (\int \frac {1}{1-i a x^2} \, dx,x,\frac {\sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{4 d}\\ &=-\frac {\sqrt [4]{-1} \sqrt {a} (4 A-7 i B) \tan ^{-1}\left (\frac {(-1)^{3/4} \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{4 d}+\frac {(1+i) \sqrt {a} (i A+B) \tanh ^{-1}\left (\frac {(1+i) \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{d}+\frac {(4 A-i B) \sqrt {\tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}{4 d}+\frac {B \tan ^{\frac {3}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)}}{2 d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [F]  time = 8.03, size = 0, normalized size = 0.00 \[ \int \tan ^{\frac {3}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)} (A+B \tan (c+d x)) \, dx \]

Verification is Not applicable to the result.

[In]

Integrate[Tan[c + d*x]^(3/2)*Sqrt[a + I*a*Tan[c + d*x]]*(A + B*Tan[c + d*x]),x]

[Out]

Integrate[Tan[c + d*x]^(3/2)*Sqrt[a + I*a*Tan[c + d*x]]*(A + B*Tan[c + d*x]), x]

________________________________________________________________________________________

fricas [B]  time = 0.58, size = 755, normalized size = 3.78 \[ \frac {2 \, \sqrt {2} {\left ({\left (4 \, A - 3 i \, B\right )} e^{\left (3 i \, d x + 3 i \, c\right )} + {\left (4 \, A + i \, B\right )} e^{\left (i \, d x + i \, c\right )}\right )} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt {\frac {-i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} + {\left (d e^{\left (2 i \, d x + 2 i \, c\right )} + d\right )} \sqrt {\frac {{\left (-16 i \, A^{2} - 56 \, A B + 49 i \, B^{2}\right )} a}{d^{2}}} \log \left (\frac {{\left (\sqrt {2} {\left ({\left (4 i \, A + 7 \, B\right )} e^{\left (2 i \, d x + 2 i \, c\right )} + 4 i \, A + 7 \, B\right )} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt {\frac {-i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} + 2 i \, d \sqrt {\frac {{\left (-16 i \, A^{2} - 56 \, A B + 49 i \, B^{2}\right )} a}{d^{2}}} e^{\left (i \, d x + i \, c\right )}\right )} e^{\left (-i \, d x - i \, c\right )}}{4 i \, A + 7 \, B}\right ) - {\left (d e^{\left (2 i \, d x + 2 i \, c\right )} + d\right )} \sqrt {\frac {{\left (-16 i \, A^{2} - 56 \, A B + 49 i \, B^{2}\right )} a}{d^{2}}} \log \left (\frac {{\left (\sqrt {2} {\left ({\left (4 i \, A + 7 \, B\right )} e^{\left (2 i \, d x + 2 i \, c\right )} + 4 i \, A + 7 \, B\right )} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt {\frac {-i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} - 2 i \, d \sqrt {\frac {{\left (-16 i \, A^{2} - 56 \, A B + 49 i \, B^{2}\right )} a}{d^{2}}} e^{\left (i \, d x + i \, c\right )}\right )} e^{\left (-i \, d x - i \, c\right )}}{4 i \, A + 7 \, B}\right ) - 4 \, {\left (d e^{\left (2 i \, d x + 2 i \, c\right )} + d\right )} \sqrt {\frac {{\left (-2 i \, A^{2} - 4 \, A B + 2 i \, B^{2}\right )} a}{d^{2}}} \log \left (\frac {{\left (\sqrt {2} {\left ({\left (i \, A + B\right )} e^{\left (2 i \, d x + 2 i \, c\right )} + i \, A + B\right )} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt {\frac {-i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} + i \, d \sqrt {\frac {{\left (-2 i \, A^{2} - 4 \, A B + 2 i \, B^{2}\right )} a}{d^{2}}} e^{\left (i \, d x + i \, c\right )}\right )} e^{\left (-i \, d x - i \, c\right )}}{i \, A + B}\right ) + 4 \, {\left (d e^{\left (2 i \, d x + 2 i \, c\right )} + d\right )} \sqrt {\frac {{\left (-2 i \, A^{2} - 4 \, A B + 2 i \, B^{2}\right )} a}{d^{2}}} \log \left (\frac {{\left (\sqrt {2} {\left ({\left (i \, A + B\right )} e^{\left (2 i \, d x + 2 i \, c\right )} + i \, A + B\right )} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt {\frac {-i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} - i \, d \sqrt {\frac {{\left (-2 i \, A^{2} - 4 \, A B + 2 i \, B^{2}\right )} a}{d^{2}}} e^{\left (i \, d x + i \, c\right )}\right )} e^{\left (-i \, d x - i \, c\right )}}{i \, A + B}\right )}{8 \, {\left (d e^{\left (2 i \, d x + 2 i \, c\right )} + d\right )}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+I*a*tan(d*x+c))^(1/2)*tan(d*x+c)^(3/2)*(A+B*tan(d*x+c)),x, algorithm="fricas")

[Out]

1/8*(2*sqrt(2)*((4*A - 3*I*B)*e^(3*I*d*x + 3*I*c) + (4*A + I*B)*e^(I*d*x + I*c))*sqrt(a/(e^(2*I*d*x + 2*I*c) +
 1))*sqrt((-I*e^(2*I*d*x + 2*I*c) + I)/(e^(2*I*d*x + 2*I*c) + 1)) + (d*e^(2*I*d*x + 2*I*c) + d)*sqrt((-16*I*A^
2 - 56*A*B + 49*I*B^2)*a/d^2)*log((sqrt(2)*((4*I*A + 7*B)*e^(2*I*d*x + 2*I*c) + 4*I*A + 7*B)*sqrt(a/(e^(2*I*d*
x + 2*I*c) + 1))*sqrt((-I*e^(2*I*d*x + 2*I*c) + I)/(e^(2*I*d*x + 2*I*c) + 1)) + 2*I*d*sqrt((-16*I*A^2 - 56*A*B
 + 49*I*B^2)*a/d^2)*e^(I*d*x + I*c))*e^(-I*d*x - I*c)/(4*I*A + 7*B)) - (d*e^(2*I*d*x + 2*I*c) + d)*sqrt((-16*I
*A^2 - 56*A*B + 49*I*B^2)*a/d^2)*log((sqrt(2)*((4*I*A + 7*B)*e^(2*I*d*x + 2*I*c) + 4*I*A + 7*B)*sqrt(a/(e^(2*I
*d*x + 2*I*c) + 1))*sqrt((-I*e^(2*I*d*x + 2*I*c) + I)/(e^(2*I*d*x + 2*I*c) + 1)) - 2*I*d*sqrt((-16*I*A^2 - 56*
A*B + 49*I*B^2)*a/d^2)*e^(I*d*x + I*c))*e^(-I*d*x - I*c)/(4*I*A + 7*B)) - 4*(d*e^(2*I*d*x + 2*I*c) + d)*sqrt((
-2*I*A^2 - 4*A*B + 2*I*B^2)*a/d^2)*log((sqrt(2)*((I*A + B)*e^(2*I*d*x + 2*I*c) + I*A + B)*sqrt(a/(e^(2*I*d*x +
 2*I*c) + 1))*sqrt((-I*e^(2*I*d*x + 2*I*c) + I)/(e^(2*I*d*x + 2*I*c) + 1)) + I*d*sqrt((-2*I*A^2 - 4*A*B + 2*I*
B^2)*a/d^2)*e^(I*d*x + I*c))*e^(-I*d*x - I*c)/(I*A + B)) + 4*(d*e^(2*I*d*x + 2*I*c) + d)*sqrt((-2*I*A^2 - 4*A*
B + 2*I*B^2)*a/d^2)*log((sqrt(2)*((I*A + B)*e^(2*I*d*x + 2*I*c) + I*A + B)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*s
qrt((-I*e^(2*I*d*x + 2*I*c) + I)/(e^(2*I*d*x + 2*I*c) + 1)) - I*d*sqrt((-2*I*A^2 - 4*A*B + 2*I*B^2)*a/d^2)*e^(
I*d*x + I*c))*e^(-I*d*x - I*c)/(I*A + B)))/(d*e^(2*I*d*x + 2*I*c) + d)

________________________________________________________________________________________

giac [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+I*a*tan(d*x+c))^(1/2)*tan(d*x+c)^(3/2)*(A+B*tan(d*x+c)),x, algorithm="giac")

[Out]

Timed out

________________________________________________________________________________________

maple [B]  time = 0.39, size = 838, normalized size = 4.19 \[ -\frac {\sqrt {a \left (1+i \tan \left (d x +c \right )\right )}\, \left (\sqrt {\tan }\left (d x +c \right )\right ) \left (4 i A \sqrt {i a}\, \sqrt {2}\, \ln \left (-\frac {-2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}+i a -3 a \tan \left (d x +c \right )}{\tan \left (d x +c \right )+i}\right ) \tan \left (d x +c \right ) a -4 i B \sqrt {i a}\, \sqrt {2}\, \ln \left (-\frac {-2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}+i a -3 a \tan \left (d x +c \right )}{\tan \left (d x +c \right )+i}\right ) a -6 i B \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}\, \sqrt {-i a}\, \tan \left (d x +c \right )-7 i B \sqrt {-i a}\, \ln \left (\frac {2 i a \tan \left (d x +c \right )+2 \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}+a}{2 \sqrt {i a}}\right ) \tan \left (d x +c \right ) a +4 B \sqrt {i a}\, \sqrt {2}\, \ln \left (-\frac {-2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}+i a -3 a \tan \left (d x +c \right )}{\tan \left (d x +c \right )+i}\right ) \tan \left (d x +c \right ) a +4 B \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}\, \sqrt {-i a}\, \left (\tan ^{2}\left (d x +c \right )\right )-8 i A \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}\, \sqrt {-i a}-4 i A \sqrt {-i a}\, \ln \left (\frac {2 i a \tan \left (d x +c \right )+2 \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}+a}{2 \sqrt {i a}}\right ) a +4 A \sqrt {i a}\, \sqrt {2}\, \ln \left (-\frac {-2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}+i a -3 a \tan \left (d x +c \right )}{\tan \left (d x +c \right )+i}\right ) a +8 A \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}\, \sqrt {-i a}\, \tan \left (d x +c \right )+4 A \sqrt {-i a}\, \ln \left (\frac {2 i a \tan \left (d x +c \right )+2 \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}+a}{2 \sqrt {i a}}\right ) \tan \left (d x +c \right ) a -2 B \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}\, \sqrt {-i a}-7 B \sqrt {-i a}\, \ln \left (\frac {2 i a \tan \left (d x +c \right )+2 \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}+a}{2 \sqrt {i a}}\right ) a \right )}{8 d \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}\, \sqrt {-i a}\, \left (-\tan \left (d x +c \right )+i\right )} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+I*a*tan(d*x+c))^(1/2)*tan(d*x+c)^(3/2)*(A+B*tan(d*x+c)),x)

[Out]

-1/8/d*(a*(1+I*tan(d*x+c)))^(1/2)*tan(d*x+c)^(1/2)*(4*I*A*(I*a)^(1/2)*2^(1/2)*ln(-(-2*2^(1/2)*(-I*a)^(1/2)*(a*
tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)+I*a-3*a*tan(d*x+c))/(tan(d*x+c)+I))*tan(d*x+c)*a-4*I*B*(I*a)^(1/2)*2^(1/2)*
ln(-(-2*2^(1/2)*(-I*a)^(1/2)*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)+I*a-3*a*tan(d*x+c))/(tan(d*x+c)+I))*a-6*I*B
*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)*(I*a)^(1/2)*(-I*a)^(1/2)*tan(d*x+c)-7*I*B*(-I*a)^(1/2)*ln(1/2*(2*I*a*ta
n(d*x+c)+2*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)*(I*a)^(1/2)+a)/(I*a)^(1/2))*tan(d*x+c)*a+4*B*(I*a)^(1/2)*2^(1
/2)*ln(-(-2*2^(1/2)*(-I*a)^(1/2)*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)+I*a-3*a*tan(d*x+c))/(tan(d*x+c)+I))*tan
(d*x+c)*a+4*B*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)*(I*a)^(1/2)*(-I*a)^(1/2)*tan(d*x+c)^2-8*I*A*(a*tan(d*x+c)*
(1+I*tan(d*x+c)))^(1/2)*(I*a)^(1/2)*(-I*a)^(1/2)-4*I*A*(-I*a)^(1/2)*ln(1/2*(2*I*a*tan(d*x+c)+2*(a*tan(d*x+c)*(
1+I*tan(d*x+c)))^(1/2)*(I*a)^(1/2)+a)/(I*a)^(1/2))*a+4*A*(I*a)^(1/2)*2^(1/2)*ln(-(-2*2^(1/2)*(-I*a)^(1/2)*(a*t
an(d*x+c)*(1+I*tan(d*x+c)))^(1/2)+I*a-3*a*tan(d*x+c))/(tan(d*x+c)+I))*a+8*A*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1
/2)*(I*a)^(1/2)*(-I*a)^(1/2)*tan(d*x+c)+4*A*(-I*a)^(1/2)*ln(1/2*(2*I*a*tan(d*x+c)+2*(a*tan(d*x+c)*(1+I*tan(d*x
+c)))^(1/2)*(I*a)^(1/2)+a)/(I*a)^(1/2))*tan(d*x+c)*a-2*B*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)*(I*a)^(1/2)*(-I
*a)^(1/2)-7*B*(-I*a)^(1/2)*ln(1/2*(2*I*a*tan(d*x+c)+2*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)*(I*a)^(1/2)+a)/(I*
a)^(1/2))*a)/(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)/(I*a)^(1/2)/(-I*a)^(1/2)/(-tan(d*x+c)+I)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int {\left (B \tan \left (d x + c\right ) + A\right )} \sqrt {i \, a \tan \left (d x + c\right ) + a} \tan \left (d x + c\right )^{\frac {3}{2}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+I*a*tan(d*x+c))^(1/2)*tan(d*x+c)^(3/2)*(A+B*tan(d*x+c)),x, algorithm="maxima")

[Out]

integrate((B*tan(d*x + c) + A)*sqrt(I*a*tan(d*x + c) + a)*tan(d*x + c)^(3/2), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.00 \[ \int {\mathrm {tan}\left (c+d\,x\right )}^{3/2}\,\left (A+B\,\mathrm {tan}\left (c+d\,x\right )\right )\,\sqrt {a+a\,\mathrm {tan}\left (c+d\,x\right )\,1{}\mathrm {i}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(tan(c + d*x)^(3/2)*(A + B*tan(c + d*x))*(a + a*tan(c + d*x)*1i)^(1/2),x)

[Out]

int(tan(c + d*x)^(3/2)*(A + B*tan(c + d*x))*(a + a*tan(c + d*x)*1i)^(1/2), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \sqrt {i a \left (\tan {\left (c + d x \right )} - i\right )} \left (A + B \tan {\left (c + d x \right )}\right ) \tan ^{\frac {3}{2}}{\left (c + d x \right )}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+I*a*tan(d*x+c))**(1/2)*tan(d*x+c)**(3/2)*(A+B*tan(d*x+c)),x)

[Out]

Integral(sqrt(I*a*(tan(c + d*x) - I))*(A + B*tan(c + d*x))*tan(c + d*x)**(3/2), x)

________________________________________________________________________________________